Hha has a defined regulatory role that is not dependent upon H-NS or StpA
نویسندگان
چکیده
The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.
منابع مشابه
Functions of the Hha and YdgT Proteins in Transcriptional Silencing by the Nucleoid Proteins, H-NS and StpA, in Escherichia coli
The Hha and YdgT proteins are suggested to modulate the expression of horizontally acquired genes by interacting with H-NS and StpA, which play central roles in the transcriptional silencing of such genes. However, it is also possible that Hha/YdgT repress gene expression independently of H-NS/StpA, as we have not fully understood the molecular mechanism through which Hha/YdgT modulate H-NS/Stp...
متن کاملModulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins.
Nascent transcripts in Escherichia coli that fail to be simultaneously translated are subject to a factor-dependent mechanism of termination (also termed a polarity) that involves the proteins Rho and NusG. In this study, we found that overexpression of YdgT suppressed the polarity relief phenotypes and restored the efficiency of termination in rho or nusG mutants. YdgT and Hha belong to the H-...
متن کاملEvolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042
Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in add...
متن کاملAnti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria.
The H-NS nucleoid-associated DNA-binding protein is an important global repressor of transcription in Gram-negative bacteria. Recently, H-NS has been implicated in the process of xenogeneic silencing, where it represses the transcription of foreign genes acquired by horizontal transfer. This raises interesting questions about the integration of the horizontally acquired genes into the existing ...
متن کاملDifferential dependence of StpA on H-NS in autoregulation of stpA and in regulation of bgl.
StpA has functional similarity to its homologue, the nucleoid structuring protein H-NS. It binds to AT-rich, planar, bent DNA and constrains DNA supercoils. In addition, StpA acts as an RNA chaperone. StpA and H-NS also form heterodimers. However, cellular levels of StpA are low due to repression of stpA by H-NS and negative autoregulation. Here we show that effective (30-fold) repression of st...
متن کامل